
1

Anatomy of a Gigabit Router
By Peter Newman
June 1998

THE RECENT GROWTH and public acceptance of the
Internet has provoked intense interest in the design of
high performance, IP-only (or IP-mostly) routers, often
called gigabit routers. Such routers employ hardware in
the data path both for switching data packets and to speed
up the packet header lookup process. This article defines
some of the components of a gigabit router and
investigates some of the design decisions involved.

Overview.
A gigabit router consists of three main components:

line cards, switch fabric, and a controller. (In fact all
communications switches, e.g. TDM circuit switch, ATM
switch, Ethernet switch, etc., may be considered to
consist of these same three components.)

Line Cards. The line cards contain the input and
output ports. These are the interfaces to the electrical or
optical transmission links that carry the data packets. A
single line card may contain only one input and one
output port or it may contain many. The number of ports
depends on the physical dimensions of the connector and
the bit rate of the transmission link. Typically all of the
ports on a single line card are of the same type (e.g.
10/100 Ethernet, DS-3, T-1, OC-3c, etc.).

Switch Fabric. The switch fabric interconnects the
line cards. For systems with an aggregate capacity of less
than about 1 gigabits per second (Gbps) the switch fabric
may be implemented with a backplane bus. For a switch
fabric with an aggregate capacity of up to 20 Gbps a
crossbar or a shared memory is currently popular. For an
aggregate capacity in excess of 20 Gbps a crossbar or a
multi-stage switch fabric is generally used.

Controller. The controller contains the computing
power required to manage the router. It implements the
control path of the router and does not participate in the
data path, i.e. the forwarding of normal data packets. The
controller runs the routing protocols — complex pieces
of software that discover where things are in a network.
They figure out in which direction packets should be
forwarded to reach any requested destination in the
network. The routing protocols do not forward the actual
data packets themselves. The information discovered via
the routing protocols is compiled into a forwarding table
and the forwarding table is used to forward the data
packets.

The complexity of a routing protocol grows with the
number of ports on the router and not with the speed of
these ports. So we can run the routing protocols in a
single centralized processor even for routers of very high
aggregate capacity. The packet forwarding function
however is directly related to the number of packets per
second that can be processed. To achieve high aggregate
forwarding rates we can use parallelism. We can
implement multiple packet forwarding engines each with
an identical copy of the forwarding table supplied by the
controller.

Centralized vs. Distributed.
This brings us to the first major design decision,

centralized or distributed forwarding. In the centralized
architecture we use hardware techniques to implement an
extremely fast packet forwarding engine. All packet
forwarding functions are implemented in this single
centralized function.

Alternatively we can distribute the forwarding
function into a number of lower speed packet forwarding
engines. A popular distribution is to locate one
forwarding engine on each line card, though it is possible
to implement a central pool of forwarding engines shared
between the line cards in some fashion.

It is a general rule in hardware that up to a point it is
better to implement a function in a single high-speed
device than in multiple lower-speed devices. It results in
lower overall costs and is far easier to manage. There is
however a threshold beyond which it becomes
increasingly expensive to achieve higher speeds in a
single centralized function and thus parallelism must be
employed to achieve higher aggregate speed. We see this
for example in the switch fabric. Up to about 10 or 20
Gbps a single shared memory is popular, but beyond this
capacity switch fabrics that make use of parallelism are
employed. The same applies to the packet forwarding
function. Beyond something like 10 million packets per
second (Mpps) it is difficult to implement the forwarding
function in a single piece of hardware and multiple
forwarding engines must be used.

If the forwarding engine is centralized the customer is
forced to purchase the entire maximum forwarding
capacity even if they only want to attach a few line cards.
If the forwarding engine is distributed the customer can
purchase forwarding capacity when they need it, i.e.
when they purchase more line cards.

2

Distributed forwarding is optimized (in terms of cost)
for the low end, when only a few line cards are
purchased. Centralized forwarding is cost-optimized for
the high end, when the system is almost fully stuffed with
line cards. Exactly the same argument can be made for
the switch fabric, although here it is much harder to
distribute efficiently because it provides the central
interconnection function.

Switching Capacity Metrics.
At this point we should mention the difference

between the performance of a gigabit router in terms of
its packet forwarding capability (Mpps) and its aggregate
capacity (Gbps). The two are not the same. The aggregate
capacity comes from the switch fabric, the ability to
transmit bits across the system. People have been
building packet switches with high aggregate capacity for
about ten years so it is fairly well understood. The packet
forwarding capability comes from the packet forwarding
engine.

We have only recently begun investigating packet
forwarding in hardware. So some of the gigabit router
products available today have an aggregate capacity from
the switch fabric of which the user will only ever be able
to use a modest percentage because the packet
forwarding engine cannot forward packets fast enough.
Of course, if all of the packets are of maximum size the
aggregate capacity can be fully used. However, 40
percent of the packets on the Internet today are of
minimum size — TCP ACKs [1].

Naming of Parts [2]
Now that we have given a brief overview of a gigabit

router we can look at some of the functions proposed for
the data path. In this section we define them and give a
little background. In the following section we discuss the
acceleration of these functions by applying hardware.

Resource Reservation. Back when virtual circuits
were cool, we had a simple method of associating the
incoming traffic with the resources that were available to
it. For example, one could reserve a specified bandwidth
on an outgoing link and make that bandwidth available
only to the traffic on a specified virtual circuit. Of course
this approach had its drawbacks; it took a long time for
the control software (signalling) to set up the virtual
circuit and reserve the bandwidth across the network, and
state (control information) had to be installed in every
switching device in the path.

The Internet uses datagrams. But we would still like
to be able to do some of the things that you could do with
virtual circuits, like reserving resources. People have
been trying to do this in a vaguely similar manner to that
used in a virtual circuit network and have found it to be

extremely difficult in practice, as the RSVP effort has
demonstrated.

Recently, there has been a shift away from the IETF’s
Integrated Services group (IntServ) approach of reserving
resources to a simpler packet marking technique now
being defined by the Differentiated Services (DiffServ)
group. DiffServ is attempting to define something simple
but useful that allows some packets to get faster service
than others do.

Classification. Whether one is attempting to reserve
precise resources or just trying to give some packets
better service than others one needs a mechanism to
decide which packets get what resources. This
mechanism is called classification. In a virtual circuit
network this is easy because the virtual circuit identifies
the traffic. But in a datagram network one needs some
other means of identifying the traffic. The only
distinguishing marks on a packet are the fields in the
packet header.

Finding Flows. The classification function looks at
the fields in the packet header to group packets into
classes. These classes are often referred to as flows. They
are roughly the equivalent of a virtual circuit in a
datagram network though much more flexible. Resources
are allocated to these flows.

In IP version 6 a field in the header, the Flow ID, is
defined to assist in the identification of flows. In IP
version 4 the most useful fields are the source and
destination addresses, the protocol field, and the type of
service field (although the DiffServ group is currently
redefining this field).

The source and destination port numbers are also
useful from TCP or UDP to define flows of high
granularity. The ability to mask out fields, and parts of
fields, is required. (The ability to specify arbitrary ranges
of values may also be useful, though this is much harder
to achieve at high-speed in hardware.) For example, to
group together all packets from a particular source
network, the source address and netmask would be used.
Entries in the classifier are called filters or rules and
express the policy for handling particular classes of
traffic.

Classification can be performed on the input
interface, on the output interface, or on both input and
output. It is possible for a single packet to match several
filters in the classifier. In this case some policy must be
established to determine what the result should be. Each
filter in the classifier specifies how packets in that class
should be handled. Packets matching a rule can be
accepted or discarded. Special resources such as reserved
bandwidth may be available to a class. Classes may be
queued at different priorities, policed, traffic shaped, or
queued in their own private queue in a per-flow queueing
system. A class may even be routed differently compared
to other packets to the same destination.

3

Longest Prefix Match.
Here again life was easy with a virtual circuit. You

just performed a direct lookup of the virtual circuit
identifier in a simple table and it told you to which output
to send the traffic. But you can't directly look up a 32-bit
destination IP address in single table. It would take 4
billion entries. And even if you could afford that much
memory the management of the table would be
unpleasant.

In the good old days when only nerds and scientists
inhabited the Internet (up until the early '90s) this wasn't
too hard. There were three lengths (classes) of the
network component of the IP address: 8-bits, 16-bits, and
24-bits; and the address itself told you which class it
belonged to. When the great unwashed were invited to
join the Internet it was quickly realized that pretty soon
we would run out of addresses if they continued to be
allocated in the old manner, and also that the routing
tables in the backbone routers were becoming too large.

IPV6. The solution was to begin work on IPV6,
which has 128-bit addresses, and in the mean time to
allow the network component of the IP version 4 address
to be of any length. This so-called Classless InterDomain
Routing (CIDR) approach permits IP addresses to be
aggregated if the network is structured hierarchically. It’s
similar to the telephone network; e.g. all telephone
numbers beginning +33 are in France.

The result of all this is that when a router receives a
32-bit destination IP address to look up in its forwarding
table it does not know how many of the bits belong to the
network component of the address.

In concept the router has to perform an address
lookup up to 32 times, first with all 32 bits, then with the
first 31 bits, then with the first 30 bits, and so on until it
finds the longest match in its table. Of course it doesn't
implement the lookup in this manner—typically a tree
structure is employed. Much current effort is being
applied to delevop algorithms that can implement this
operation very fast.

Queueing.
In the Internet the transmission of packets from their

sources is not scheduled. So packets tend to arrive at a
switching node in bursts much like public transport (even
if it is scheduled). Queues are required to store packets
during the inevitable periods when the packet arrival rate
exceeds the transmission rate of the output port. The
queue drains when the arrival rate of packets is less than
the transmission rate of the output port.

To allow TCP connections to open their window
smoothly a rule of thumb is that a port should have
sufficient buffer to queue one delay-bandwidth product's
worth of data. However, if the queue is too large it just

adds unnecessary delay if it fills. If the queue is too small
packets are dropped when bursts arrive, resulting in poor
behavior, low throughput for TCP and high loss for UDP.

Queueing consists of two operations: Putting the
packets into the queue (enqueueing) and taking the
packets out of the queue (scheduling). These are two
separate operations. Enqueueing involves buffer
management and discard strategy. A third consideration
is the organization of the queue often called the queueing
discipline.

Queueing Discipline.
Most routers used in the Internet today implement a

single first in first out (FIFO) queueing discipline. This is
a simple strategy to implement. It requires no scheduling
decision, as the next packet for service is always the one
at the head of the queue. However, a FIFO offers no
control over the delay a packet will experience in the
queue. There is no guarantee of fairness in sharing the
link bandwidth between users and no protection against
misbehaving users.

Multiple priorities. The simplest extension is to
offer multiple priorities with one FIFO queue for each
priority. Traffic in a lower priority class is only served if
all of the higher priority queues are empty. This allows
some simple control over the delay for traffic in the
higher priority classes if there is a constraint on the
amount of traffic in these classes but there is still no
guarantee of fairness or protection from users in the same
or higher classes.

Weighted Fair Queuing. In order to offer fair
sharing and protection from misbehaving sources,
weighted fair queueing has been proposed. This is
equivalent to a FIFO queue per class (or per flow) with a
scheduler that shares the bandwidth of the link between
the classes in a predetermined manner.

Class Based Queuing. We can make things more
complicated by introducing the concept of hierarchy to
get hierarchical weighted fair queueing or class based
queueing. Here, if there is any spare bandwidth left after
everyone has been given their predetermined share
(because someone is not using all of their allotted
bandwidth) then the excess bandwidth is shared
according to the rules expressed by the hierarchy.

Finally we can combine all of these queueing
disciplines to arrive at a very complex queueing system,
for example, several priorities and within each priority
level a hierarchy of weighted fair queueing. Whether it is
worth all this presumably depends upon how expensive
and how scarce a resource the bandwidth is.

Conserving work. The above queueing disciplines
will always transmit a packet if there is a packet in the
queueing system and bandwidth available on the output
link. Only if all of the packet queues serving a link are

4

empty will the link become idle. This class of queueing
system is called work-conserving.

There is another class of queueing system that will
not necessarily transmit a packet even if the output link is
idle. These queueing systems are called non work-
conserving. They are used to perform traffic shaping or
rate limiting. In such a system each flow can be assigned
a specific bandwidth. Packets will only leave the queue if
the amount of bandwidth currently consumed by the class
to which they belong is less than the predetermined limit.

Discarding Packets.
When a packet arrives at a queueing system there is a

fundamental decision to be made. Do I accept this packet
or do I discard it? A number of factors affect this
decision. First, is there enough room available in the
buffer memory? If there is insufficient room something
has to be discarded.

The easiest discard strategy to implement is to discard
the newly arrived packet. This is called tail-drop. Another
approach is to discard packets from the front of the queue
until there is enough room now available to store the
newly arrived packet. This is the drop from front
strategy. Another strategy, typically in a queueing
system with per-flow queues, is to drop packets from the
longest queues until there is enough room for the new
packet. Drop from front and drop from longest queue are
reported to result in better performance for TCP.

Discard can be used to control the traffic. Flows can
be given a discard preference so that packets from some
flows are more likely to be discarded than packets from
other flows. Flows can be metered according to some
traffic profile. If a flow exceeds its traffic profile the
packets can be marked to be discarded in preference to
packets from flows that have not exceeded their allotted
profile.

Random Early Detection (RED).
Various random discard schemes have been proposed

and investigated. RED has been demonstrated to
improve performance in large scale networks. It has
become accepted and is currently being implemented and
deployed. (Some part of this success might be attributed
to the choice of acronym which emphasizes the more
positive aspects of the algorithm, detection rather than
discard.)

TCP interprets lost packets as an indication of
congestion. When it detects packet loss it reduces the rate
at which it transmits data into the network. Also, under
stable conditions TCP gradually increases its
transmission rate until it detects packet loss in an attempt
to transmit at the highest data rate that the network can
support at that time. If a tail-drop algorithm is used this
results in the queue at the bottleneck being almost
permanently full. Keeping queues full is a bad idea.

Random early detection is an algorithm that attempts
to detect the onset of congestion before the queue is full
by measuring the average queue length. When it detects
that the average queue length exceeds a threshold, for
every arriving packet it throws a loaded pair of dice (i.e.
computes a random number). The random number
determines whether the packet should be discarded. The
probability of discard (the loading of the dice) is
proportional to the amount by which the average queue
length exceeds the lower threshold.

By discarding a packet before the queue is totally full,
TCP is instructed to reduce its transmission rate while
there is still space in the queue to cope with arriving
bursts of packets. By using a random number the
available capacity is shared approximately evenly
between the competing users. Also the heaviest users are
the ones most likely to get a packet discarded because
they are sending the most packets. The result of this
algorithm is that the queue is kept mostly empty rather
than mostly full. So bursts can still be accepted, which is
what the queue is for, but TCP still gets its feedback of
dropped packets to tell it to back off its transmission rate.

A (Brief) Look at Congestion Control
The algorithm TCP uses to discover the rate at which

to transmit data into the network by monitoring dropped
packets is loosely called congestion control or congestion
management or flow control. Although these terms have
(or used to have) specific meanings, these days they are
roughly synonymous.

The TCP algorithm is also called congestion
avoidance even though the algorithm deliberately causes
congestion in order to discover the best transmission rate.
It doesn't actually manipulate the transmission rate
directly, it manipulates a window size, but this is getting
far too detailed.

There are other proposals that claim to do a much
better job of congestion control. For example, the ATM
Forum wrote a specification for Available Bit Rate
(ABR) that defines an Explicit Rate algorithm.

While intellectually interesting, the ABR specification
basically starts by discarding the entire Internet as we
know it, and would require reprogramming the 100
million or so computers attached to it. This approach is
not currently seen as a winner. We have to make do with
what we've got and improve it slowly.

Buffer Management.
Buffers are where you put the packets when you want

to store them. You make a FIFO queue by linking buffers
together into a chain. Buffer management refers to the
policy and mechanisms by which the buffer resources are
controlled.

Buffers are frequently implemented as a shared
resource. Many output ports share the same pool of

5

buffers to construct their queues. This is more efficient in
its use of memory than replicating an individual pool of
buffers for each port. Buffer management must ensure
that no single port, or small number of ports, can use up
all of the buffers. There must always be a minimum
number of buffers available for each port.

Frequently the actual filling, emptying, and chaining
of buffers is performed by hardware. Buffer management
must control the process of passing control of buffers to
the various hardware components. The term buffer
management is also often used in a wider sense to include
the discard strategy or even loosely in the very wide
sense of control of the queueing system.

Scheduling.
Now that we have considered how to put the packets

into the queue we get to look at how to take them out of
the queue. Keep in mind that taking the packets out is a
separate and independent activity from putting them in.
When considering the untold complexities of Quality of
Service one can lose sight of this fundamental principle.

If the queueing system is a single FIFO then there is
no scheduling decision to be made. Always take the
packet at the head of the queue. For other queueing
disciplines the scheduling decision selects the next packet
to be transmitted out of the output port. We discussed
examples of scheduling algorithms in the section on
Queueing Disciplines.

Quality of Service (QoS).
Last, and definitely the least pleasant, we come to

Quality of Service (QoS). QoS is a tar pit. Once you start
down that path it is very difficult to stop. And it never
ends. Keep in mind Lixia Zhang's aphorism: "Quality of
service does not generate additional bandwidth." QoS is a
concept that comes from circuit switching, from the
phone company. It is capitalist switching [3]. For a
connection-oriented network it is a measure of the quality
of a connection for which, presumably, the customer is
paying.

The quality of a connection, or virtual connection, is
measured in terms of delay, delay variation, throughput,
and loss (or bit errors). Back when all you could ask the
network was, "Please give me a phone call," it was pretty
easy to measure the quality. But then again, all you could
ask for was a phone call — even if you wanted to send
images, video, or data.

For the last 20 years or so we have been searching for
the pot of gold at the end of the switching spectrum, the
grand unified theory of networking, the integrated
services network. This is a network of which you can ask
anything. You can request a specific throughput, a
specific delay, a specific variance of delay, and specific
loss characteristics.

Loosely, we call the ability to ask for whatever you
want from the network, quality of service (QoS). After 20
years of trying we’ve discovered that delivering QoS is
very, very difficult.

It is difficult for many reasons, not the least of which
is that the customer does not actually know what he or
she wants. And not because the customer is dumb, but
because the traffic source cannot be characterized simply.
Also because, for a computer, the traffic source is
removed from the network by the operating system
which inserts its own peculiar characteristics of delay.
Further, in the case of the Internet, you can't trust the
customer to abide by any declared traffic profile, and if
you are going to let the customer request resources you
need a method of charging for them.

No doubt we will solve these problems in the fullness
of time, at least the technical problems. But right now it
would be better to do something simple, for example,
economy class, premium, and first class. We may also
restrict the access rate of a customer onto and from the
Internet, and offer virtual private network tunnels with
fixed guaranteed bandwidth.

Policy Based QoS.
We might emulate the frame relay concept of

committed information rate across a fixed tunnel. Rather
than let the customer ask what they want on a per use
basis, control access on a long term basis, or give control
to the network manager. This is policy based quality of
service rather than per connection based quality of
service.

To illustrate the concept of policy based quality of
service consider the process of ordering a sandwich on
both sides of the Atlantic:

England: "What would you like love, egg or cheese?"
America: "Give me a turkey and pastrami on rye,

Monterey jack and cheddar with the works but hold the
mustard and pickle."

The user must know what she wants (service), must
be able to describe it (traffic characteristics), and must
know how to request it (signalling). The English,
however, make do with a (simple?) class system and
some queueing discipline, where everyone stands in line
— according to class of course!

Putting it All Together, Real Fast.
We need to apply hardware acceleration to the packet

forwarding operation, to the classification and
forwarding, to the switch fabric, and to the queueing
system. Depending on the choice of switch fabric, the
queueing system and the switch fabric may be integrated
into a single component.

Unfortunately it is difficult to combine both the
classification function and the forwarding function into a

6

single data structure. So they are typically implemented
in separate hardware elements running in parallel.

The classification function requires the equivalent of
a content addressable memory search. If a real content
addressable memory (CAM) is used there is a restriction
on the size of these devices and therefore the number of
entries in the classifier. The classification problem is not
amenable to an implementation based on hashing because
each entry in the table may want to examine a different
set of bits in the packet header. Also the classification
operation may result in a number of matches, one of
which should be selected according to some policy.

The packet forwarding operation requires a longest
prefix match lookup on the destination IP address for
unicast or the source and destination IP addresses for
multicast. Fast implementations of the longest prefix
match operation are a subject of current research. The
typical software implementation uses a tree structure
called a Patricia tree. Some approaches implement this
tree structure and the lookup engine in hardware.

Another approach is to reduce the data structure to a
very compact representation so that it can be stored in
very fast memory, possibly even in the layer 2 cache of a
processor. An alternative is to represent the structure in
such a way as to reduce the number of memory fetches
required per address lookup. A third proposal is to simply
use a very, very big table on the grounds that memory is
cheap these days.

Problems, Problems. A problem with many of the
fast lookup proposals is that they require the forwarding
table to be structured into a compact representation. This
makes it very difficult, if not impossible, to incrementally
insert and delete routes. It is argued that routes do not
change very often and only need to be updated once
every 30 seconds or so. Some estimates suggest an
update interval as long as once every two minutes. Not
everyone is convinced that this is acceptable. Two
minutes is a long time for incorrect forwarding
information to exist, possibly resulting in routing loops.

The design considerations regarding the switch fabric
for an IP router are very similar to those for an ATM
switch. The additional complication revolves around the
fact that IP packets are of variable length. While it is
possible to build some forms of switch fabric using
variable length packets it tends to be easier to chop the
packets into small fixed length data units send them
across the switch fabric and then put them back together
again. Indeed for some switch fabric designs, e.g. a
crossbar, you have to do this or you will obtain poor
performance [4]. The problem of reassembly is easier
than it is in ATM as there are only a limited number of
sources from which concurrently arriving packets have to
be reassembled, at most one from each input to the
switch fabric.

Buy or Build?
We could discuss the joys of input versus output

buffered switch fabrics — but it has all been said before
[5]. A more pragmatic approach is to purchase a switch
fabric chipset if you can find something at a reasonable
price that does vaguely what you want. There are a
number of startups working on general purpose switch
fabric chipsets with a variety of different sizes and
features. Why roll your own if you can get one ready-
made at a decent price?

Pain threshold. Always keep in mind the
engineering maxim: “ Whenever possible use brute
force.” Only when past the threshold of pain should you
try and be clever. Hence a shared memory is popular for
modest designs and a crossbar for speeds at which a
shared memory becomes challenging. One limitation
with a crossbar is that while adding more crossbar chips
in parallel can increase the speed of each port, it is
difficult to achieve large numbers of ports. So 32 by 32
or maybe 64 by 64 is the limit although one can make
each port run as fast as one can afford to pay.

Data Lumps.
Beyond this size there is little choice but a multistage

fabric. Things can get messy with a multistage fabric. In
a multistage fabric it is possible for all the little data
lumps to get out of order (you’ll note that I am trying
really hard not to call them cells). Out of order problems
with your data lumps increases the difficulty of
reassembly. Finally there is multicast which can be
trusted to throw a wrench into any half decent switch
fabric design.

Typically queueing will exist in several places in a
gigabit router design and for a number of different
reasons. Some queueing will be required for pipelining,
to permit multiple pieces of hardware to work on a small
part of the problem concurrently. The queueing that
implements the main queueing system will typically be
located on the output port in most switch designs or
within the shared memory for a shared memory switch
fabric. There is a choice of DRAM or SRAM. SRAM is
fast but it is expensive if a large amount of memory is
required. DRAM is cheap in large quantities but none too
fast.

Perhaps the hardest problem in designing a gigabit
router is deciding the amount of flexibility required.
Software based routers have a great deal of flexibility in
adapting to new functionality and changes in the
standards that occur from time to time. Implementing
some of the forwarding functions in hardware reduces
that flexibility. The tradeoff between flexibility
functionality and speed is at the heart of the design
problem in the same way that features, time to market
and cost are at the heart of the marketing problem.

7

Marketing Matters.
Gigabit routers come in three flavors: core, edge and

enterprise. Core routers require high aggregate
bandwidth, high packet forwarding rates, and really
stable software. They require high-speed interfaces but
only a limited number of different types (packet over
SONET and ATM at OC-3, OC-48 and soon OC-192).
They require a stable implementation of the BGP routing
protocol and the ability to handle very large routing
tables (several hundred thousand entries). They will
probably not require sophisticated queueing and quality
of service mechanisms as traffic at the core is
concentrated (and bottlenecks are most likely to be at the
edge not the core).

Redundancy required. Redundancy is usually
supported by using multiple power supplies, duplicating
the switch fabric and the controller, and operating the
spares as a warm standby. However, anyone that owns a
PC will readily appreciate that it is not usually the
hardware that goes wrong these days. Hence the
emphasis on stable software, especially the routing
protocols.

An edge router requires less bandwidth and
forwarding capacity. Most interfaces are of lower speed
but there is a wider range of interface types to support.
More sophisticated queueing and quality of service
mechanisms are required, as it is very likely that
bottlenecks will be found at the edge (high-speed meets
low-speed.) This is also where the billing will go when
we figure out how to deploy premium services in the
Internet. BGP is also required at the edge and so is
redundancy.

It is not certain that an enterprise router really
requires gigabit capacity, at least not yet. Startups that
began by aiming at the enterprise have shifted focus to
the edge router. However, in the fullness of time we will
deploy gigabits here too and maybe sooner than we think.
Cost (sorry, price) will obviously be important here so
products that are gigabit switches with some simple
routing capabilities are likely to be popular.

Additional capabilities such as an integrated firewall
or traffic shaping may also become important. Products
in this space will have to support a wide variety of
interface types and speeds and handle some legacy traffic
also.

Conclusion.
As I look back it surprises me that so many of us

simply ignored Moore’s Law (the functionality that can
be implemented in silicon doubles approximately every
18 months). Up until relatively recently IP packet header
processing was thought too difficult a problem to
implement in silicon. Well it’s not, and that changes
things some.

Gigabit routers are a recent development so it is not
yet clear what set of features are required. Some suggest
that simple priority queueing is sufficient whereas others
[6] are implementing extremely complex queueing and
traffic management capabilities.

So what’s the difference between a switch and a
router? Not much if you only consider the hardware —
just a collection of ASICs and memory. There is much
more functionality in the hardware of a gigabit router, but
in time, with volume production, the cost of the hardware
will fall. The difference lies in the software.

Routing software is very complex and expensive to
develop, debug, and test. While there are at present
many companies engaged in the development of gigabit
routers, some claiming very high aggregate bandwidth,
the proof of the pudding is likely to be found in the
quality of the routing code. �

References.
[1] S. Keshav, R. Sharma, "Issues and trends in router

design." IEEE Communications Mag., May 1998, p. 144.
Also see other articles in this issue.

[2] Henry Reed, "Naming of Parts"
<http://www.iprg.nokia.com/~pn/poems/naming_of_part
s.htm>, see also T. J. DesJardins, "Assembly of Cells,"
Proceedings of the ATM Forum Poetry Subworking
Group,
<http://www.iprg.nokia.com/~pn/atmf_poetry/assembly_
of_cells.htm>

[3] P. Newman, "Capitalists, Socialists, and ATM
Switching," Data Communications Mag. Dec. 1994 p
126.
<http://www.iprg.nokia.com/~pn/papers/datacomm94.ht
ml>.

[4] N. McKeown, "A fast switched backplane for a
gigabit switched router," Business Communications
Review, Dec. 1997.

[5] P. Newman, "ATM technology for corporate
networks," IEEE Communications Magazine, Apr. 1992
pp 90-101.
http://www.iprg.nokia.com/~pn/papers/switch_design.pdf

[6] V. P. Kumar, T. V. Lakashman, D.Stiliadis,
"Beyond best effort: Router architectures for the
differentiated services of tomorrow’s Internet." IEEE
Communications Mag., May 1998, p. 152.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dr. Peter Newman is a Member of the Technical

Staff at Nokia Sunnyvale. He was an early employee of
Ipsilon Networks, where he helped design IP Switching
and associated protocols. Before joining Ipsilon Peter
helped design an early ATM switch at Adaptive
Corporation . Peter earned his Ph.D. in fast packet
switching at the University of Cambridge in 1989.
<peter.newman@acm.org>


